1) Design of the monopile: your design (i.e. selection of diameter and length) needs to satisfy the ultimate vertical bearing capacity requirements with a factor of safety equal to 2.5. Monopiles are hollow steel sections refer to the literature for ranges of parameters needed. You will also need to calculate the soil strength parameters, for the sand and the clay material. 2) Then analyse the performance of your monopile under the working loads, i.e. analyse the settlement and the deflection profiles and the corresponding internal forces (axial and shear force and bending moment diagrammes). To do that you have to consider two cases: a) Apply the relevant elastic solutions, assuming constant (averaged) soil properties the approximations are left to your discretion to get a rough theoretical estimation. In order to do that, you have to analyse the stiffness parameters of the soil materials. b) Solve again, for variable soil properties, this time applying a numerical solution with finite differences. Use Matlab to solve the system of equations (alternatively, you can use Ms Excel, if you have difficulties in Matlab). 3) Model the problem in Plaxis 2D, using the Embedded Beam Row element for your monopile. Regarding the soil material models, you can use linear Mohr-Coulomb or non linear hardening model for the sand and linear Mohr-Coulomb or non-linear soft-soil model for the clay. You are strongly encouraged to do both and compare the differences. Compare also with your elastic analysis in question (2). 4) Now consider an alternative foundation, with a 3-by-3 pile group (9 piles overall) connected to a stiff pile cap. You need to design again the pile group (diameter, length and spacing between the piles). To estimate the efficiency ratio of the pile group, you can apply the elastic interaction factors method. 5) Last step, model your pile group in Plaxis 2D, using Embedded Beam Row elements for the piles and a beam element for the pile cap. In this analysis you can use only one of the soil model combinations (in you have created both a linear and a non-linear set). Apply the loads in a sequence: first the vertical force, then the horizontal and the bending moment, and compare the effect on the results. Comment on the pile group interaction effects.

The price is based on these factors:

Academic level

Number of pages

Urgency

Basic features

- Free title page and bibliography
- Unlimited revisions
- Plagiarism-free guarantee
- Money-back guarantee
- 24/7 support

On-demand options

- Writer’s samples
- Part-by-part delivery
- Overnight delivery
- Copies of used sources
- Expert Proofreading

Paper format

- 275 words per page
- 12 pt Arial/Times New Roman
- Double line spacing
- Any citation style (APA, MLA, Chicago/Turabian, Harvard)

Delivering a high-quality product at a reasonable price is not enough anymore.

That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.

You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.

Read moreEach paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.

Read moreThanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.

Read moreYour email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.

Read moreBy sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.

Read more